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Abstract

The present study was undertaken in order to gain understanding of certain aspects of natural convection in a glass-

melting tank heated locally from below. Based on numerical predictions, the effects of Rayleigh number, geometry of

heated strip and tank on the flow patterns and heat transfer are investigated for Rayleigh numbers in the range 102 to

107, strip width to tank length ratios 0.1–0.5 and half-tank aspect ratios 1.0, 3.0 and 7.0. The effect of the heated strip

position is studied by placing it at centre and off-centre positions at the tank bottom wall. The effect of Rayleigh number

on heat transfer is found to be significant. The Nusselt number is obtained as a function of Rayleigh number, heated

strip width to tank length ratio and tank aspect ratio. Augmentation of flow circulation intensity and fluid temperature

results when increasing the tank length and strip width. A scale analysis led to a behaviour which is confirmed by the

numerical results.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection above horizontal heated surfaces

appears in a variety of physical circumstances (e.g.

thermal plumes, meteorological and geophysical phe-

nomena) as well as in industrial equipment (e.g. cooling

of electronics, veneer). The melting of glass is another

important industrial application in which horizontal

heated surfaces could play a significant role. Motivated

by the glass melting process, the present numerical study

examines in detail the important parameters of the

natural convection above heated horizontal surfaces

located on the bottom wall of open enclosures such as

those of glass melting tanks.

Although several studies have been performed on

the natural convection along vertical plates, a very

limited number of studies examine the problem of

natural convection heat transfer above a horizontal

plate. The heat transfer in a vertical cylindrical enclo-

sure subjected to localized heating at the centre of its
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bottom wall was studied numerically by Torrance and

Rockett [1] and experimentally by Torrance et al. [2].

Their numerical and experimental results show very

good agreement in the laminar flow regime. Pretot et al.

[3] reported a numerical and experimental study of

natural convection in air above an upward-facing par-

tially heated plate placed in a semi-infinite medium.

Sezai and Mohamad [4] also studied numerically nat-

ural convection in air due to a discrete flush-mounted

rectangular heat source on the bottom of a horizontal

enclosure. Boehm and Kamyab [5] studied laminar

natural convection of air, due to stripwise heating

accomplished by an array of alternatively heated and

non-heated strips placed on an infinite horizontal sur-

face in a fluid of infinite extent. Chu and Hickox [6]

studied localized heating from below in a horizontal

enclosure of square platform which contained a tem-

perature-dependent property fluid. In their work, which

was complemented by experiments, a constant-temper-

ature heated strip of fixed width was placed on the

bottom wall of the enclosure. Aydin and Yang [7]

simulated numerically the natural convection heat

transfer of air in a two-dimensional, square enclosure

with localized heating applied by a strip placed at the
ed.
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Nomenclature

A aspect ratio of half-tank, L=H
As heated strip ratio, Ws=L
g gravitational acceleration

H tank height

k thermal conductivity

L tank half length

Lt tank total length (¼ 2L)
Nufs local Nusselt number at the free surface

Nu average Nusselt number at the heated strip

p fluid pressure

P dimensionless pressure

Pr Prandtl number

q00 heat flux rate from the strip

Ra Rayleigh number

T fluid temperature

t time

u, v velocity components in x and y directions

U , V dimensionless velocity components

x, y spatial coordinates

X , Y dimensionless coordinates

Ws strip width

Greek symbols

a thermal diffusivity

b coefficient of thermal expansion

H non-dimensional temperature

m fluid kinematic viscosity

q fluid density

s non-dimensional time

/ generalized variable

W non-dimensional stream function

Subscripts

fs free surface

s strip

t total

max maximum

i, j coordinate indices

0 reference value
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bottom wall centre and symmetric cooling from the side

walls. Their analysis included the influence of the he-

ated strip width and Rayleigh number on the fluid flow

and heat transfer. Katsavos et al. [8] studied experi-

mentally and numerically the natural convection of a

temperature-dependent fluid above a heated wire placed

on the bottom of a rectangular tank with the use of an

in-house PIV system. Emery and Lee [9] studied the

effect of property variations on the natural convection

in a square enclosure with different boundary condi-

tions on the sidewalls. A comparison of the results for a

variable property fluid with those of a constant prop-

erty showed that, although the fluid flow and temper-

ature fields seem to be different, the overall heat

transfer is unaffected by the variation of the fluid

properties.

The idea of using heated strips in glass-melting tanks

seems to originate from Plumat [10]. He employed he-

ated strips placed at the bottom of the tank and normal

to its main axis in physical model studies in order to

enhance the melting procedure. The effect of horizontal

heated strips at the bottom wall of an industrial glass

melting tank in two- and three-dimensions was studied

numerically by Sarris et al. [11]. Increasing the average

temperature of the glass-melt, especially in the region

above the cold bottom wall is of great practical impor-

tance to the glass industry.

The heating of glass-melting tanks is mainly imple-

mented through radiation from the flames and the

combustion chamber just above the tank. As a conse-

quence, the free surface temperature is controlled by the
radiation absorption of glass-melt. Cheong et al. [12]

showed that the Rosseland (or diffusion) approximation

is adequate to account for the radiation heat transfer in

industrial glass-melting tanks. This is achieved through

the concept of the effective thermal conductivity. The

natural convection due to the temperature variations at

the free surface is usually the driving force for the

whole flow of the glass-melt, considering the very low

pulling rates of the raw materials. Extensive discussions

on the effects of the free surface temperature distribu-

tion on the flow and heat transfer of the glass-melt can

be found, among others, in [13]. Modern glass-heating

furnaces include a large number of closely spaced

burners, resulting in almost uniform temperature dis-

tribution at the glass-melt free surface and in consid-

erable reduction of mixing. Therefore, in order to

enhance mixing, electric boosting and/or air bubbles are

usually introduced into the melt. The alternative

method of using heated strips at the bottom wall, which

has the advantage of enhancing localized mixing at the

places where it is needed most, has not been considered

in the open literature. The results presented here show

for which working parameters this method can be

effective.

In the present work, the natural convection in a

rectangular tank heated with a strip placed at the bot-

tom wall of the tank is studied numerically, using a fluid

with the same temperature-dependent properties as the

glass-melt. The objective is to determine the influence of

the heated strip on the flow and heat transfer charac-

teristics of the glass-melt under uniform free surface
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temperature distribution and to optimize the strip

dimensions and heating conditions for efficient mixing of

the melt.
Table 1

Thermo-physical properties of a container glass-melt (after

Muschick and Muysenberg [32] and Jian and Zhihao [17])

Symbol Value (T in K)

q, kg/m3 2300.0

cP , J/(kgK) 1300.0

keff , W/(mK) 5:386–2:168� 10�2T þ 2:058� 10�5T 2

l, kg/(m s) 10:0 �2:58þ 4332
T�521ð Þ

b, K�1 6.0· 10�5
2. Mathematical formulation

Consider a rectangular open tank of length Lt ¼ 2L
with a heated strip of width 2Ws at the bottom of the

tank, as shown in Fig. 1, and filled up to height H with

glass melt. The boundary conditions considered are: no-

slip on the solid boundaries, zero shear stress and zero

vertical velocity at the free surface. The temperature of

the free surface is kept constant and the tank walls are

considered adiabatic while a uniform heat lux q00 is as-

sumed for the heated strip.

The glass-melt is considered as Newtonian fluid, and

the flow incompressible and laminar. For the treatment

of the buoyant term in the momentum equation, the

extended Oberbeck [14]–Boussinesq [15] approximation

is adopted, to account for the temperature variations of

density, viscosity and thermal conductivity. Hofmann

[16] provides a detailed discussion on the validity of the

extended Boussinesq approximation as applied to the

simulation of glass melt in industrial tanks. The specific

heat and the coefficient of thermal expansion of the glass

melt are considered temperature independent in the

high-temperature ranges of the melt, Jian and Zhihao

[17]. The thermo-physical properties of the glass-melt

used are shown in Table 1. Based on these assumptions,

the governing equations in dimensionless form for a

two-dimensional flow become
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The coefficients f ðHÞ and hðHÞ represent in dimension-

less form the temperature-dependent viscosity and ther-

mal conductivity, respectively. For a fluid with constant

properties f ðHÞ ¼ 1:0 and hðHÞ ¼ 1:0, and for the glass

melt 0:426 f ðHÞ6 14:72 and 0:576 hðHÞ6 1:23 in the

temperature range 1400–1800 K. The dimensionless

variables that appear in equations (1)–(4), are

f ðHÞ ¼ lðHÞ
l0

; hðHÞ ¼ kðHÞ
k0

ð5Þ

X ¼ x
H
; Y ¼ y

H
; U ¼ uH

a0

; V ¼ vH
a0

ð6Þ

s ¼ tm0
H 2

; P ¼ pH 2

qa0m0
; H ¼ T � T0

q00H
k0

ð7Þ

where, P and H are the non-dimensional pressure

and temperature, respectively, and U and V are the
g
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non-dimensional velocity components in the x- and y-
directions, respectively. The subscript ‘0’ indicates that

the reference values for the properties are evaluated at

the constant temperature of the free surface (T0 ¼ 1400

�C).
The characteristic parameters of the flow are the

Rayleigh number ðRa0 ¼ gbq00H4

m0a0k0
Þ based on the tank height

H and the strip heat flux q00, and the Prandtl number

ðPr0 ¼ m0
a0
Þ. All Rayleigh numbers studied here may be

encountered in industrial glass melting tanks, through

control of the externally supplied electric current. The

Prandtl number of the glass melt at the reference tem-

perature was approximately 737.

The computations were performed using unsteady

formulation on the half domain for the cases of low

Rayleigh number and with the heated strip centred at

the bottom wall. In all other cases, asymmetric heating

at the bottom wall or high Raleigh numbers, the com-

putations were carried out in the entire domain. The

initial and boundary conditions for the entire solution

domain and with the heated strip centred at the bottom

wall are given below:

s ¼ 0

U ¼ V ¼ H ¼ 0

s > 0

oU
oY
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U ¼ V ¼ oH
oX

¼ 0 at X ¼ 0

U ¼ V ¼ oH
oX
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H

¼ 2A

U ¼ V ¼ oH
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¼ 0 at Y ¼ 0 and

06X <
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H
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2L
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>>:
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The zero reference value of the streamfunction W (cal-

culated from the velocity field using the relations

V ¼ � oW
oX or U ¼ oW

oY ) corresponds to the position

ðX ; Y Þ ¼ ð0; 0Þ. The Nusselt number is calculated from

the temperature field, using the values at the boundary

and the next two interior grid nodes. The average

Nusselt number at the heated strip is given by

Nu ¼ hH
k0

¼ 1

Hs

ð9Þ

where, Hs is the non-dimensional average temperature at

the heated strip, calculated as
Hs ¼
T s � T0
q00H=k0

ð10Þ

and, the average dimensional temperature at the heated

strip, T s, is calculated as

T s ¼
1

Ws

Z L

L�Ws

T ðx; 0Þdx ð11Þ

The local heat transfer at the free surface of the tank is

determined by the local Nusselt number:

Nufs ¼
hH
k

¼ � 1

Hs

oH
oY


Y¼1

ð12Þ

and the average Nusselt number at the free surface is

given as

Nufs ¼
Ws

L
1

Hs

¼ Ws

L
Nu ð13Þ

indicating that the total heat supplied to the glass melt

by the heated strip is equal to the total heat loss from the

free surface.
3. Numerical procedure

The governing equations together with the corre-

sponding boundary conditions are solved numerically,

employing a finite-volume method. The SIMPLE

method of Patankar and Spalding [18] is used to couple

the momentum and continuity equations in a uniform

staggered grid. In order to minimize numerical diffusion,

the convective terms in the momentum and energy

equations are discretized using the QUICK scheme of

Leonard [19], in the modified form proposed by Hayase

et al. [20]. The diffusion terms are discretized using

central differences, while a second order accurate im-

plicit scheme is used for the transient terms. In all cal-

culations presented here, under-relaxation factors with

values of 0.5, 0.5, 0.7 and 0.3 were applied to U , V , H
and P , respectively.

Convergence within each time step is determined

through the sum of the absolute relative errors for each

dependent variable in the entire flow field:

X
i;j

/kþ1
i;j � /k

i;j

 
/k

i;j

  6 e ð14Þ

where, / represents the variables U , V or H, the super-

script k refers to the iteration number and the subscripts

i and j refer to the space coordinates. The value chosen

for e was 10�5, for all calculations. Steady state is

achieved when
P

i;j j/
nþ1
i;j � /n

i;jj6 e, where n refers to the

time iteration. Time steps from 10�5 to 10�6 were used to

insure good accuracy in time and ability to capture

instabilities if they exist. All calculations are carried out
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on Intel CPU based personal computers using the in-

house CFD code GLASS3D, [21].

The present numerical model was validated against

the benchmark numerical solution of De Vahl Davis [22]

for natural convection of air in a square cavity. These

results in the case of Ra ¼ 106 showed relative differ-

ences of 0.1% and 0.06% for the streamfunction values

at the centre of the cavity and the average Nusselt

number, respectively. It was also validated against the

numerical results of Canzarolli and Milanez [23] for the

case of natural convection in a shallow enclosure
(a)

(b)

Fig. 3. Temperature and vertical velocity distributions for Ra0 ¼ 106,

(b) Y ¼ 0:365.
(L=H ¼ 7) heated from below at constant heat flux and

cooled from the sidewalls. The relative differences ob-

served in the maximum value of streamfunction and the

average Nusselt number, at the highest Rayleigh number

of 106 studied, were 0.5% and 0.04%, respectively. Fi-

nally, the model was tested against the work of Emery

and Lee [9] for natural convection in a square enclosure

with both temperature-dependent viscosity and thermal

conductivity, for the case of Ra0 ¼ 105. At the dimen-

sionless height of Y ¼ 0:743, the maximum relative dif-

ference was found to be 0.01% for the temperature and

less than 0.4% for the vertical velocity component.

Prior to the final computations, grid independence

tests were performed for every tank aspect ratio, A,
studied. For the square half-tank, the representative case

of As ¼ 0:2 was tested for Ra0 ¼ 104 and 106, using

uniform grid sizes of 30· 30 to 100· 100, in both x- and
y-directions of the half tank. As shown in Fig. 2, the

variation of the maximum local Nusselt number at the

free surface appears to be negligible, and for grid sizes

larger than 80· 80 the variation of the maximum stream

function are less than 0.1%. For these reasons, the

80· 80 uniform grid was selected for all calculations in

the present study. For the shallow tank, a uniform grid

of 80 nodes was adopted in the y-direction for both tank

aspect ratios (A ¼ 3 and 7) with 140 nodes for A ¼ 3 and

200 nodes for A ¼ 7 in the x-direction. These selected

grids resulted in differences less than 0.8% for the max-

imum local Nusselt number at the free surface and

maximum value of streamfunction from finer grids.

In order to determine possible three-dimensional

effects, computations were performed for a three-

dimensional tank with width equal to the height. In the
A ¼ 1 and As ¼ 0:1 along horizontal planes: (a) Y ¼ 0:045, and
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z-direction, symmetry conditions were considered and

the grid employed was uniform of size 160· 80 · 40.
Indicative results for the case of Ra0 ¼ 106, A ¼ 1 and

As ¼ 0:1 are presented in Fig. 3, where temperature and

vertical velocity distributions along planes parallel to the

bottom wall are shown. These results show clearly that

the heated strip does not produce significant three-

dimensional effects in the range of parameters studied.

This behaviour applies to all flow properties and is in

agreement with the stability analysis of the glass-melting

tank by Lim et al. [24]. Comparison of their results

based on two-dimensional steady-state computations

with those from two- and three-dimensional unsteady

computations shows no observable differences. For these

reasons, two-dimensional computations were performed

in the present study. Numerical experiments also con-

ducted in a tank with rigid sides showed no three-

dimensional effects for the Rayleigh numbers used in the

present simulation.
4. Results

The present numerical results were obtained for a

range of Rayleigh numbers from 102 to 107, tank aspect

ratios A ¼ 1:0, 3.0 and 7.0 and strip width to tank length

ratios As ¼ 0:1, 0.2, 0.3, 0.4 and 0.5. The flow and

temperature fields in the tank are shown in the form of

streamlines and isotherms, with 15 equally spaced con-

tour levels. The streamline levels are between the

respective maximum value and zero and the temperature

levels range between the zero value at the free surface

and the highest value corresponding to the heated strip

region.

4.1. Square half-tank with symmetric heating

Figs. 4–9 show the results corresponding to the

square half-tank ðA ¼ 1Þ where the heated strip is cen-

tred on the bottom wall of the tank. The flow just above

the strip ascends towards the cold free surface, then

moves horizontally towards the corner of the tank,

descends to the bottom of the tank and finally returns to

the heated strip region. Fig. 4 shows the streamlines and

isotherms for different Rayleigh numbers and a heated

strip width to tank length ratio As ¼ 0:1. When

Ra0 ¼ 102, the isotherms are almost concentric circles

around the heated strip, because heat is transferred to

the fluid body by pure conduction. As the Rayleigh

number increases, and consequently the fluid starts to

circulate, the convective mode of heat transfer starts to

dominate over that of conduction. This increase in the

circulation intensity results in a decrease of the fluid

temperature. The free surface, the sidewall and the part

of the bottom wall not covered by the heated strip have

almost the same low temperature (H ¼ 0) whereas the
temperature gradients are concentrated just above

the heated strip, where a thermal plume is formed. In the

highest Rayleigh number cases studied (i.e. Ra0 ¼ 106,

107) the isotherms show significant curvature just above

the heated strip.

Fig. 5 shows the dimensionless temperature distri-

bution, for strip width ratio As ¼ 0:1 along the bottom

wall (a) and the symmetry plane (b). The almost similar

temperature distributions corresponding to the lower

Rayleigh numbers of 102 and 103 indicate that heat

transfer is mainly due to conduction. The maximum

temperature of approximately 0.24 occurs at the centre

of the heated strip and corresponds to the pure con-

duction limit. With increasing Rayleigh number, the

temperature at the bottom wall not covered by the he-

ated strip, decreases and, at Ra0 ¼ 107, it becomes al-

most zero. From the temperature distribution along the

symmetry plane for all cases studied, a conduction

thermal boundary layer is shown to exist adjacent to the

free surface. This layer covers approximately 30% of the

fluid depth for Ra0 ¼ 104, 10% for Ra0 ¼ 105 and less

than 5% for Ra0 ¼ 106 and 107. Chu and Hickox [6]

observed also this surface conduction layer to have a

thickness of approximately 15% for Rayleigh numbers

of the order of 104.

The distribution of local Nusselt number at the free

surface, for the case As ¼ 0:1 and for all the Rayleigh

numbers studied, is shown in Fig. 6. The positive sign

indicates that heat is lost from the fluid. For the lower

Raleigh numbers, no significant variations across the

surface are observed due to the pure conduction heat

transfer. For higher Rayleigh numbers, the free surface

heat transfer rate is maximum near the symmetry plane

due to the rising plume and minimum at the sidewalls.

Increasing the Rayleigh number increases the maximum

values of the local Nusselt number at the free surface

above the heated strip.

The effect of heated strip width to tank length ratio As

on the flow and heat transfer is illustrated in Fig. 7, for

the convection-dominated case of Ra0 ¼ 106 and the

range of As ¼ 0:2–0.5 (the case As ¼ 0:1 was shown in

Fig. 4). Increasing As, does not result in significant

changes of the flow patterns but intensifies the circula-

tion zones and increases the maximum fluid tempera-

ture. The strip width affects strongly the temperature

distribution within the body of the fluid, but causes

insignificant changes near the sidewall.

The influence of the Rayleigh number on the present

natural convection flow can be explained qualitatively

on pure scaling arguments (see [23,25,26]). In the fol-

lowing analysis, all quantities are estimated at the ref-

erence temperature. As shown in Fig. 4, at high enough

Rayleigh numbers the flow along and above the heated

strip forms two boundary layers. A thermal boundary

layer is formed along the heated strip which turns into a

buoyant thermal plume centred on top of the strip. The



(a)

(d)

(c)

(b)
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Ra0 ¼ 102 (Wmax ¼ 0:0, Hmax ¼ 0:24); (b) Ra0 ¼ 105 (6.48, 0.14);
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initiation of this flow can be understood by considering

the simpler problem of a heated horizontal plate in a

fluid of infinite extent. This problem, for the case of

constant uniform temperature, has been studied exten-

sively by, for example, Goldstein and Lau [27], Rotem

and Claassen [28] and Lewandowski [29], and relatively

less for constant heat flux by Pera and Gebhart [30] and

Chen et al. [31]. In this kind of heating, the flow is drawn

inwards from the two edges of the heated strip forming

boundary layers along its surface which may meet at the

centre of the strip before they turn through a right angle

and form a thermal plume. If the strip width were suf-

ficiently wide and its heating rate very high, the local

buoyancy will cause the boundary layers to separate

prior to the strip centre. The latter is unlikely to occur in

the present flow configuration. The flow inwards is
caused entirely by the lower pressure levels towards the

strip centre which are induced entirely by the buoyancy

force away from the surface.

Using the boundary layer momentum and energy

equations for a Prandtl number value of 1 or greater and

pure scaling arguments (according to which the pressure

gradient term balances the buoyant term in the y-
momentum equation, the pressure gradient term bal-

ances the viscous term in the x-momentum equation,

and the inertial term balances the diffusion term in the

energy equation) leads to a Nusselt–Rayleigh number

dependence: ðRaWs
Þ1=5 for an isothermal plate, and
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Fig. 7. Streamlines and isotherms for Ra0 ¼ 106, A ¼ 1: (a)

As ¼ 0:2 (Wmax ¼ 25:468, Hmax ¼ 0:117), (b) As ¼ 0:3 (30.59,

0.132), (c) As ¼ 0:4 (34.98, 0.144), (d) As ¼ 0:5 (38.86, 0.154).
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ðRaWs
Þ1=6 for a constant heat flux plate (present study).

The results of this remarkably simple analysis, agree in

form with the analytic results of Chen et al. [31]. The

above modified Rayleigh number is based on the strip

width Ws as characteristic length.

Because, in the present problem the fluid is of finite

extent, the rising fluid in the thermal plume will have to

return to the bottom to replace that already risen,

resulting in a recirculation pattern. The sense of the

recirculation is such that the flow along the bottom

wall is in the same direction as that induced by the

buoyancy forces corresponding to the infinite fluid,

when the fluid starts moving from rest. This fluid mo-

tion is expected to result in a thinner thermal bound-

ary, which in turn is expected to increase the rate of

heat transfer.

Using pure scaling arguments again as in [25] for

both the thermal boundary layer and the plume and with

Pr ¼ 1 or greater leads to the following scaling laws:

(a) For the energy equation in the thermal boundary

layer of thickness dt over the strip having a temper-

ature difference DT :

Longitudinal convection
uDT
Ws

	 Transverse diffusion a
DT

d2
t

ð15Þ

(b) For the u-momentum equation within the thermal

boundary layer over the strip:

Pressure gradient
DP
Ws

	 Viscous forces
lu

d2
t

ð16Þ
In the lower region of the plume, where the temperature

is high, the viscosity of the glass-melt could be approx-

imately 35 times smaller than that away from the heated

strip and thus, the viscous forces are not expected to be

very important. In this region, the plume is subjected to

strong acceleration as was observed experimentally by

Katsavos et al. [8] using a glycerol solution (a fluid with

similar viscosity behaviour to the glass-melt). Based on

this discussion, it is expected, that in the lower region of

the plume, the pressure gradient in the vertical direction

is of the same order with the buoyancy forces and the

inertial forces, i.e.:

DP
H

	 q
v2

H
	 qgbDT ð17Þ



Rayleigh

N
us

se
lt

101 102 103 104 105 106 107 108100

101

102

As = 0.1
As = 0.5
Scale Analysis

Nu Ra1/5∝

Pure conduction
limits:

Fig. 8. Variation of Nu at the heated strip as a function of Ra0
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The pressure rise at the centre of the heated strip on the

wall region where the plume stagnates is

DP 	 qv2 ð18Þ

and from mass continuity

vdp 	 udt ð19Þ

where dp is the width of the plume.
Eqs. (15)–(19) are sufficient for determining the un-

known scales. Of particular interest are the resulting

scaling laws for the thickness dt, and the velocity u in the

thermal boundary layer along the width of the strip:

dt 	 H
Ws

H

� �1=2

Ra�1=4
T ð20Þ

u 	 a
H
Ra1=2T ð21Þ

for a strip at uniform temperature with the Rayleigh

number defined as RaT ¼ gbDTH3

m0a0
, where DT the difference

between the temperature of the strip and T0, and

dt 	 H
Ws

H

� �2=5

Ra�1=5
0 ð22Þ

u 	 a
H

Ws

H

� �1=5

Ra2=50 ð23Þ

for a heated strip of uniform flux, as in the present

study.

The maximum value of the streamfunction wmax is of

the order of ud, where d is the velocity boundary layer

thickness along the heated strip. For the case of Pr 
 1,

the velocity boundary layer thickness d is of the order:

d � dtPr1=2.
Thus, we have

For constant temperature :

wmax 	 a
Ws

H

� �1=2

Ra1=4T Pr1=2 ð24Þ

and for constant flux :

wmax 	 a
Ws

H

� �3=5

Ra1=50 Pr1=2 ð25Þ

Finally, from the total heat rate (Q � q00Ws) entering the

tank bottom from the heated strip, the average Nusselt

number over the heated strip can be expressed as

Constant temperature :

Nu 	 Ws

H

� ��1=2

Ra1=4T ¼ ðAsAÞ�1=2Ra1=4T ð26Þ

Constant flux :

Nu 	 Ws

H

� ��2=5

Ra1=50 ¼ ðAsAÞ�2=5Ra1=50 ð27Þ

Owing to the fact that dt � Ws, the domain in which the

scale analysis is valid can be determined from Eqs. (20)

and (22):

Constant temperature :

Ws

H

� �1=2

Ra1=4T ¼ ðAsAÞ1=2Ra1=4T 
 1 ð28Þ
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Constant flux :

Ws

H

� �2=5

Ra1=50 ¼ ðAsAÞ2=5Ra1=50 
 1 ð29Þ

These relations represent the necessary criteria for the

existence of a thermal boundary layer along the heated

strip and a thermal buoyant plume above it.

The verification of the validity of the above scaling

arguments is demonstrated with the numerical results of

Fig. 8, where the Nusselt number is plotted as a function

of Ra0 for the strip width ratios of 0.1 and 0.5. The

relation Nu / Ra1=5 is satisfied in almost all the range of

the Rayleigh number that satisfies the criterion

ðAsAÞ2=5Ra1=5 
 1. For As ¼ 0:1 and 0.5, the relation (27)

is valid for Ra 
 102 and 4, respectively, which results

from satisfying the inequality (29). This is very well

illustrated in Fig. 8 where for Ra0 ¼ 103, only the case

As ¼ 0:5 follows the relation (27). For lower Rayleigh

numbers the criterion (29) is not satisfied, and the

Nusselt number remains practically constant, as the heat

transfer is dominated mainly by conduction. The hori-

zontal dashed lines show the corresponding Nusselt

numbers for the pure conduction.

The influence of both Rayleigh number and heated

strip width As on the Nusselt number is shown in Fig. 9.
(a)

(b)

(c)

(d)

(e)

Fig. 10. Streamlines and isotherms for A ¼ 3, As ¼ 0:1: (a) Ra0 ¼ 1

Ra0 ¼ 105 (11.134, 0.194), (d) Ra0 ¼ 106 (28.087, 0.122), (e) Ra0 ¼ 10
As expected, the increase of Ra0 increases the heat

transfer in all cases, while the increase of As results in a

decrease of Nusselt number. The last observation is

connected with the fact that as the supplied heat from

the heated strip for a given Ra0 remains the same, the

wider the heated strip the lower the heat transfer rate is.

This variation is almost identical for the two lower

Rayleigh numbers studied because of domination of

conduction, and it is quite different from the higher Ra0
cases, where convection becomes significant. For the

pure conduction case, when the heated strip covers the

entire bottom of the tank (As ¼ 1), the Nusselt number

has the value of 1.

4.2. Shallow tank with symmetric heating

Fig. 10 shows the streamlines and isotherms at dif-

ferent Rayleigh numbers for a tank with A ¼ 3 and a

heated strip width As ¼ 0:1. As in the previous case, the

flow consists of a single cell that rotates counterclock-

wise. However, in this case, the cell does not occupy the

whole extent of the tank, especially for intermediate Ra0.
For very small values of Ra0 the heat transfer is only due

to pure conduction. As the Rayleigh number increases

and thus convection increases, the circulation cell
02 (Wmax ¼ 0:0, Hmax ¼ 0:47), (b) Ra0 ¼ 104 (3.756, 0.313), (c)
7 (77.328, 0.075).
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shrinks and this process continues until the Ra0 reaches

the value of 104. Further increase in the Rayleigh

number causes convection to dominate over conduction

and as a result the circulation cell expands to occupy the

entire tank.

The temperature fields show the existence of two well

defined regions, a cold uniform temperature region and

a hot region. A thermal penetration length can be de-

fined which represents the horizontal distance from the

vertical plane passing through the centre of the heated

strip which is affected by the thermal plume. For com-

parison purposes, this distance is determined by the

furthest point of the lowest value isotherm (level value is

1/15). A thermal penetration due to convection appears

at approximately Ra0 ¼ 104, while at Ra0 ¼ 105, the

thermal penetration occupies more than one-third of the

tank length; at Ra0 ¼ 106, occupies approximately two-

thirds of the tank length; and at Ra0 ¼ 107, reaches al-

most the sidewall of the tank. This thermal penetration

length concept has also been studied, among others, by

Poulikakos [26] and Ganzarolli and Milanez [23], but

was based on an isotherm value of 1/10. Increase of the

Rayleigh number makes the thermal plume stronger and

slender, as in the square half-tank case.

The influence of the heated strip width ratio As on the

flow and heat transfer characteristics for A ¼ 3 and

Ra0 ¼ 106 is illustrated in Fig. 11 (the value of As ¼ 0:1
was already illustrated in Fig. 10). The circulation pat-

terns are not affected significantly by As, but the maxi-

mum streamfunction value, which is a measure of their

intensity, is increased by a factor of 2 between As ¼ 0:1
and 0.5. The temperature distribution inside the fluid
(d)

(c)

(b)

(a)

Fig. 11. Streamlines and isotherms for Ra0 ¼ 106, A ¼ 3: (a) As ¼ 0:2

As ¼ 0:4 (51.609, 0.183), (d) As ¼ 0:5 (56.585, 0.197).
body is strongly affected by As, especially near the heated

strip, as in the corresponding square half-tank case.

The effect of Rayleigh number and heated strip width

ratio As on the Nusselt number for a tank with A ¼ 3

is shown in Fig. 12. Increasing As, the Nusselt number

decreases as in the square half-tank case. The Nusselt

number corresponding to a given As increases also

with increasing Rayleigh number. For the two smaller

Ra0 studied, heat transfer is dominated mainly by
(Wmax ¼ 38:335, Hmax ¼ 0:148), (b) As ¼ 0:3 (45.756, 0.167), (c)
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conduction and the Nu vs. As curves are relatively close

to each other, especially for small As. However, for

Ra0 ¼ 103, as As increases, a weak contribution from

convection causes the small differences observed.

The flow and temperature fields for the most shallow

tank studied (A ¼ 7) with As ¼ 0:1 and different Ra0
values are shown in Fig. 13. The region where the tem-

perature is affected by the strip is large at low Ra0 due

to conduction and shrinks initially with the Ra0 until a

thermal plume is formed at approximately Ra0 ¼ 104.

This plume becomes more slender by further increas-

ing the Rayleigh number and simultaneously the tem-

perature penetration length is increased as a result of

the influence of the free surface. At the highest Ray-

leigh number the thermal penetration approaches the

tank sidewall. As previously observed (case A ¼ 3) the

extent of the circulation cell increases monotonically

with increasing Ra0 in the pure convective regime of

Ra0 > 104.
(a)

(b)

(c)

(d)

(e)

(f)

Fig. 13. Streamlines and isotherms for A ¼ 7, As ¼ 0:1: (a) Ra0 ¼ 10

Ra0 ¼ 104 (5.875, 0.406), (d) Ra0 ¼ 105 (15.933, 0.244), (e) Ra0 ¼ 106

(a)

(b)

(c)

(d)

Fig. 14. Streamlines and isotherms for Ra0 ¼ 106, A ¼ 7: (a) As ¼ 0:2

As ¼ 0:4 (70.309, 0.229), (d) As ¼ 0:5 (76.503, 0.248).
The flow and temperature fields for strip width values

As ¼ 0:2 to 0.5 and for Ra0 ¼ 106 are shown in Fig. 14.

The circulation cell seems to be of larger extent and

more intense with increasing As, as previously observed

for the other tank aspect ratios. The thermal penetration

length increases also with increasing As and, for the

largest value it reaches almost the sidewall. In principle,

both parameters Ra0 and As can increase the heat

transfer in a tank of specified aspect ratio A, in accor-

dance with Eq. (27). However, an important aspect of

glass production process, which affects the quality of the

final product, is homogenization of the glass melt. This

becomes possible through the existence of circulation

currents in the tank and uniform temperature fields,

avoiding the formation of cold regions. Comparing the

flow and temperature fields in Figs. 10 and 13, which

correspond to fixed As with variable Ra0, with the

respective Figs. 11 and 14 which correspond to fixed Ra0
with variable As, we observe by increasing As that: (a) the
2 (Wmax ¼ 0:0, Hmax ¼ 0:734), (b) Ra0 ¼ 103 (1.131, 0.715), (c)

(40.247, 0.149), (f) Ra0 ¼ 107 (111.475, 0.089).

(Wmax ¼ 53:546, Hmax ¼ 0:183), (b) As ¼ 0:3 (62.898, 0.208), (c)
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circulation current is stronger as indicated by the peak

streamline values and of larger extent covering the entire

half of the tank, which in turn promotes mixing and

homogenization of the glass melt, and (b) the isotherms

show that the increase of As raises the temperature in the

entire tank, thus avoiding the presence of cold regions

and the possibility of local solidification of the melt.

This temperature field contributes further to the

homogenization of the glass melt. The increase in Ray-

leigh number (through increasing the heat flux rate q00

and consequently the operational costs) increases mainly

the temperature locally above the heated strip. Based on

the above arguments, it seems that the most effective

way of increasing flow circulation currents and temper-

ature of the glass melt is by increasing As for all tank

aspect ratios studied.

The dependence of the Nusselt number on the Ray-

leigh number for different tank aspect ratios and the

fixed value of As ¼ 0:1 is shown in Fig. 15. The

Nu / Ra1=5 relation describes well the heat transfer by

convection, for all the tank aspect ratios and for all

Rayleigh numbers studied. For low Rayleigh numbers

the heat transfer is due to conduction and, thus, the

Nusselt numbers remain unchanged. The Nusselt num-

bers corresponding to pure conduction are shown in Fig.

15 by the horizontal dashed lines. For this range of

Rayleigh numbers the criterion of validity of the scale

analysis, Eq. (29), is not satisfied anymore. For A ¼ 1, 3

and 7, this criterion gives that Eq. (27) is approximately

valid for Ra0 
 102, 11 and 2, respectively.

Finally, the effect of tank aspect ratio on the Nusselt

number for different Rayleigh numbers and a fixed value

As ¼ 0:1 is shown in Fig. 16. The Nu decreases almost

linearly on a log–log plot with the tank aspect ratio and

with approximately the same slope for Ra0 P 104 (con-
Rayleigh
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Fig. 15. Variation of Nu at the heated strip with As ¼ 0:1 as a

function of Ra0 at different aspect ratios A.
vective regime) as is indicated by Eq. (27). As shown in

Fig. 16, for Ra0 ¼ 102 and all aspect ratios studied, the

Nusselt number approximates the conductive regime,

whereas for Ra0 ¼ 103 at some aspect ratios heat transfer

is due to pure conduction and at some others to a mixed

mode. For Ra0 ¼ 103, a mixed mode behaviour when

increasing the tank aspect ratio occurs for A > 2. This

demonstrates the influence of A on the initiation of

convective currents, as implied by Eq. (27). The slope of

the curve Nusselt number vs. A curve is different than � 2
5

as expected, because heat transfer is not yet due mainly

to the convection.

4.3. Non-symmetric heating

The heated strip is placed successively at the tank

centre (i.e. 1
2
Lt) and to the right of the centre in incre-

ments of 1
12
Lt. The cases studied include all Ra0, ant the A

and As ranges as in the symmetric heating cases. The

recirculation patterns and temperature fields for the

representative case of Ra0 ¼ 106, A ¼ 3 and As ¼ 0:1 are

shown in Fig. 17 with the heating strip centred at posi-

tions 1
2
Lt,

8
12
Lt and

11
12
Lt. When the strip position is close

to the tank centre, the familiar double cell flow pattern

does appear. The extent of each of the two cells, as well

as the resulting temperature penetration length are

completely controlled by the strip position. As the strip

approaches the adiabatic sidewall, the smaller circula-

tion cell disappears while the other cell covers the entire

tank, resulting in a small increase of the maximum fluid

temperature.

The effect of the heated strip position on the heat

transfer at the free surface of the tank (expressed in the

form of local Nusselt number distribution) is shown in

Fig. 18. The peak value of the local Nufs is considerably
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(b)
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Fig. 17. Streamlines and isotherms for Ra0 ¼ 106, A ¼ 3, As ¼ 0:1 with strip placed at position: (a) 1
2
Lt (Wmax ¼ 28:087,

Wmin ¼ �28:087, Hmax ¼ 0:122), (b) 8
12
Lt (26.798; 29:541; 0:124), (c)

10
12
Lt (34.266, 0.0, 0.130).
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Fig. 18. Distribution of Nufs along the free surface for

Ra0 ¼ 106, A ¼ 3, As ¼ 0:1, and for different heated strip posi-

tions.
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higher, when the heated strip is placed closer to the

sidewall.
5. Conclusions

A numerical study was presented of the buoyancy-

induced flow and heat transfer in a two-dimensional

open tank with localized heating from below and cool-

ing from the free surface using a high Pr fluid. The

influencing parameters are the Rayleigh number, the

tank aspect ratio and the heated strip width. From

the results presented and discussed above, the following

may be concluded:

• For small Rayleigh numbers, the heat transfer is

dominated by conduction, while at higher Ra0 con-

vection becomes dominant.
• For shallow tanks with symmetric heating, increasing

the Rayleigh number results in an increase of the

thermal penetration length from the symmetry plane

to the sidewall. However, the increase of Ra0 causes

local increase of the temperature above the heated

strip without noticeable increase of the temperature

in the colder regions of the tank.

• Increase of the tank aspect ratio and the heated strip

width intensifies the fluid flow and increases the tem-

perature of the fluid. This makes the glass-melt more

homogeneous resulting in better quality of the final

product.

• A scale analysis, which gives Nu 	 ðAsAÞ�2=5Ra
1
5

0,

agrees very well with the numerical results. This scale

analysis was carried also for a constant temperature

heated strip resulting to a Nu 	 ðAsAÞ�1=2Ra1=4T rela-

tionship.

• The position of the heated strip plays also a role

on the flow currents, the temperature distribution in

the glass melt and the thermal penetration. Placing

the heated strip near the adiabatic side wall results

in a single cell with a consequent reduction in thermal

penetration.
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